Crypt Provider API

The Crypt Provider API

Draft 7.6.1999 Version 1.01

History

22.1.99

· First draft version.

1.2.99

· Revised version.

11.2.99

· DName management corrected: Each site has only one X.509 subject’s Dname for all algorithms. Different types (algorithms RSA and DSA) are distinguished by a boolean flag where needed.

7.6.99 (Version 1.01)

· Return values of CryptProvider_RSADecodeData corrected.

· Added values for target attribute nDataEncryption to set the size of the session key.

The Crypt Provider API is part of the AVM NW API. The product implements all layers to establish ‚secure PPP‘ itself, but allows an external application to provide all the security related parameters.

Using this approach the external application can do all the key and certificate management to implement a customer defined secure communication scenario. This can include the use of smart cards for example.

The Crypt Provider API is based on callbacks from the product to the external application (simply called crypt provider). Every time the product requires some help from the external application a callback will be done. Since both the product and the external application run in different Windows processes the crypt provider is notified using inter process communication (a semaphore).

Terms

Crypt Provider

The Crypt Provider is an external application that is responsible for key and certificate management. It also has to implement the used public key crypt algorithms (RSA and DSA). The Crypt Provider may make use of smart cards.

DName

The DName (X.509 distinguished name) is a name that identifies a pair of public/private keys. The DName is included in a certificate. DNames are exchanged as plain null terminated ASCII strings at the Crypt Provider API.

Certificate

A certificate holds a public key and a subject’s DName (along with other attributes). It is signed by a trusted entity.

Signature

Kind of checksum generated using a private key and can be verified using the public key.

RSA

A famous public key crypt algorithm.

DSA

Digital Signature Algorithm based on public keys.

Trust Center

The Trust Center issues and signs certificates.

Step 1

A restricted (ECP only) mode of the of the Crypt Provider API is called Step 1. In this mode ECP (but no CEP and no EAP) is used for crypted connections. The only callbacks used are CryptProvider_RSAEncodeData and CryptProvider_RSADecodeData.

Function Overview and Assigned ordinal numbers

The following ordinal numbers are assigned to the crypt provider fucntions.

Crypt Provider

AVMNW_CrypProvider_Register
@340

AVMNW_CryptProvider_Callback
@341

AVMNW_CryptProvider_Unregister
@342

Functions

AVMNW_RESULT PASCAL AVMNW_CryptProvider_Register(
 /*OUT*/
HANDLE phSema,
 /*IN*/
struct CryptProviderCallbacks *pCallbacks,
 /*IN*/
char *szDName_Issuer,
 /*IN*/
char *szDName_Subject);

Parameters

phSema
Pointer to a memory location that will receive a semaphore handle to be signaled when help from the crypt provider is required.

pCallbacks
The actual pointers to the callback functions.

szDName_Issuer
The DName of the issuer of the own certificates. This will also identify the trust center to be used. The memory is maintained by the crypt provider.

szDName_Subject
The subject’s DName of the own RSA and DSA certificates. The memory is maintained by the crypt provider.

Remarks

The application calls this function to become a crypt provider. A crypt provider is a software module the provides algorithms and management for public/private keys and certificates.

The crypt provider will be notified every time its help is required by a signal to *phSema.

Whenever the crypt provider is notified, it should call AVMNW_CryptProvider_Callback(). This function will than do the appropriate callback. The actual callback functions implemented by the crypt provider are specified in pCallbacks. The structure if as follows:

struct CryptProviderCallbacks {

DWORD dwSize; // the size of the structure

CryptProvider_GetOwnCertificate pGetOwnCertificate;

CryptProvider_ReceiveCertificate pReceiveCertificate;

CryptProvider_ForgetCertificate pForgetCertificate;

CryptProvider_VerifySignature pVerifySignature;

CryptProvider_MakeSignature pMakeSignature;

CryptProvider_RSAEncodeData pRSAEncodeData;

CryptProvider_RSADecodeData pRSADecodeData;

};

The parameter DName_Issuer specifies issue of the own certificates. This is also the trust center. The parameter DName_Subject specifies the own RSA and DSA certificate. RSA and DSA are distinguished by a boolean flag where needed.

A registered crypt provider have to call AVMNW_CryptProvider_Unregister() before it terminates.

It is allowed to register as a crypt provider before the product is running.

Step 1

To request Step 1 mode of the Crypt Provider API the parameter szDName_Subject must be set to NULL.

In this case the following values are not used (and should be set to NULL also):

szDName_Issuer, pGetOwnCertificate, pReceiveCertificate, pForgetCertificate, pVerifySignature and pMakeSignature.

Return Value

AVMNW_OK
The function succeeded

AVMNW_ERROR_BUSY
There is already another crypt provider registered.

AVMNW_ERROR_PARAM
At least one of the input parameters is illegal.

AVMNW_ERROR
General error (e.g. not registered).

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server - supported

See Also

AVMNW_CryptProvider_Unregister

AVMNW_RESULT PASCAL AVMNW_CryptProvider_Callback(
 /*IN*/ void *pPrivate);

Parameters

pPrivate
Parameter that is transparently transferred to the callback function.

There are no parameters.

Remarks

This function tells the API to do a callback for the crypt provider. The registered crypt provider should call this function every time it is notified from the AVM product that a callback to the crypt provider is required.

Within this function the API will call the pending callback specified by function pointers in AVMNW_CryptProvider_Register().

Since crypt providing is time critical, this function should be called as soon as possible after notification. Any user interaction should be avoided.

Any resources (e.g. dynamically allocated memory to transport DNames, certificates or data to the product) allocated in the callbacks can be freed after this function returned.

Return Value

AVMNW_OK
The function succeeded.

AVMNW_ERROR
General error (e.g. not registered).

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server - supported

See Also

AVMNW_CryptProvider_Register

AVMNW_RESULT PASCAL AVMNW_CryptProvider_Unregister(void);

Parameters

There are no parameters.

Remarks

A registered crypt provider has to call this function before it terminates. The crypt provider will no longer be used by the product.

The crypt provider must not call this function form within a crypt provider callback.

Return Value

AVMNW_OK
The certificate is provided by the crypt provider.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI – supported

ISDN Access Server – supported

See Also

AVMNW_CryptProvider_Register

typedef DWORD (PASCAL *CryptProvider_GetOwnCertificate) (
 /*IN*/
void *pPrivate,
 /*IN*/
char szDName_Subject,
 /*IN*/
BOOL bDSA,
 /*OUT*/
DWORD *pCertSize,
 /*OUT*/
BYTE **ppCertificate);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

szDName_Subject
The name of the required certificate (own RSA or DSA certificate).

bDSA
Specifies the algorithm of the requested certificate. FALSE for RSA, TRUE for DSA.

pCertSize
The memory location where the size of certificate has to be placed on output.

ppCertificate
The memory location where the pointer to the certificate has to be placed on output. The memory of the certificate is maintained by the crypt provider.

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to retrieve an own certificate (either RSA or DSA). The crypt provider should deliver valid certificates only.

The certificate should be issued by the trust center specified in AVMNW_CryptProvider_Register().

This function is used by the product to forward a certificates (within CEP) to the remote site.

Step 1

This function is not used in Step 1 mode.

Return Value

AVMNW_OK
The certificate is provided by the crypt provider.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI – supported

ISDN Access Server – supported

See Also

typedef DWORD (PASCAL *CryptProvider_ReceiveCertificate) (
 /*IN*/
void *pPrivate,
 /*IN*/
DWORD dwCertSize,
 /*IN*/
BYTE pCertificate,
 /*OUT*/
char **pszDName_Subject,
 /*OUT*/
BOOL*pbDSA);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

dwCertSize
The size of the certificate in byte.

pCertificate
A pointer to the certificate. The memory is maintained by the product.

pszDName_Subject
The memory location where the pointer to the subject’s DName has to be placed on output.

pbDSA
The memory location where the algorithm type of the certificate has to be placed on output.

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to verify a received certificate (within CEP). The crypt provider should verify the certificate (expiration, signed by trust center,...). It may also check any attribute of the certificate to establish its own communication policies (e.g. closed user groups).

If the crypt provider accepts the certificate, it has to memorize at least the subject‘s DName, algorithm type and public key stored in the certificate. These will be used in VerfiySignature() and RSAEncodeData() at a later time. The product will notify the crypt provider when these information are no longer required by calling ForgetCertificate().

If the certificate is accepted, the crypt provider also has to deliver the subjects DName and algorithm type of the certificate of the remote site in pszDName_Subject and pbDSA.

This function is used by the product to forward received certificates (within CEP) to the crypt provider and to learn the DName and algorithm type of the certificates.

Step 1

This function is not used in Step 1 mode.

Return Value

AVMNW_OK
The certificate is accepted by the crypt provider.

AVMNW_CERT_INVALID
The certificate is not valid (e.g. not signed, expired, ...)

AVMNW_CERT_REJECT
The crypt provider doesn’t accept the certificate due to its own policies (e.g. closed user groups).

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server – supported

See Also

typedef DWORD (PASCAL *CryptProvider_ForgetCertificate) (
 /*IN*/
void *pPrivate,
 /*IN*/
char szDName_Subject,
 /*IN*/
BOOL bDSA);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

szDName_Subject
The subjects DName of the certificate that is no longer needed.

bDSA
The algorithm type of the certificate that is not longer needed. FALSE for RSA, TRUE for DSA.

Remarks

This function is implemented by the crypt provider and called from within

AVMNW_CryptProvider_Callback().

The product calls this function to notify the crypt provider that a certificate previously received by CryptProvider_ReceiveCertificate() will not be referenced any more.

Step 1

This function is not used in Step 1 mode.

Return Value

AVMNW_OK
The certificate is accepted by the crypt provider.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server – supported

See Also

typedef DWORD (PASCAL *CryptProvider_VerifySignature) (
 /*IN*/
void *pPrivate,
 /*IN*/
char szDName_Subject,
 /*IN*/
BOOL bDSA,
 /*IN*/
DWORD dwDataSize,
 /*IN*/
BYTE *pData,
 /*IN*/
DWORD dwSignatureSize,
 /*IN*/
BYTE *pSignatureData);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

szDName_Subject
The subject’s DName of the public key to be used.

bDSA
The algorithm type of the signature. FALSE for RSA, TRUE for DSA.

dwDataSize
The size of the signed data in byte.

pData
A pointer to the signed data. The memory is maintained by the product.

dwSignatureSize
The size of the signature in byte.

pSignature
A pointer to the signature. The memory is maintained by the product.

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to verify a signature using a public key referenced by szDName_Subject and bDSA. The function CryptProvider_ReceiveCertificate() has been called before, so that the crypt provider knows this public key (stored in the received certificate).

This function is used by the product to (inbound) authenticate the remote site within EAP.

Step 1

This function is not used in Step 1 mode.

Return Value

AVMNW_OK
The function succeeded.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server – supported

See Also

typedef DWORD (PASCAL *CryptProvider_MakeSignature) (
 /*IN*/
void pPrivate,
 /*IN*/
BOOL bDSA,
 /*IN*/
DWORD dwInDataSize,
 /*IN*/
BYTE *pInData,
 /*OUT*/
DWORD *pdwOutDataSize,
 /*OUT*/
BYTE **ppOutData);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

bDSA
The algorithm type to be used for the signature. FALSE for DSA, TRUE for RSA.

dwInDataSize
The size of the data to be signed in byte.

pInData
A pointer to the data to be sized. The memory is maintained by the product.

pdwOutDataSize
The memory location where the size of signature has to be placed on output.

ppOutData
The memory location where the pointer to the signature has to be placed on output. The memory of the signature is maintained by the crypt provider.

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to digitally sign data using the own private RSA or DSA key. The algorithm is specified with bDSA.

This function is used by the product to do (outbound) authentication within EAP.

Step 1

This function is not used in Step 1 mode.

Return Value

AVMNW_OK
The function succeeded.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server - supported

See Also

typedef DWORD (PASCAL *CryptProvider_RSADecodeData) (
 /*IN*/
void *pPrivate,
 /*IN*/
char *szTargetName,
 /*IN*/
DWORD dwInDataSize,
 /*IN*/
BYTE *pInData,
 /*OUT*/
DWORD *pdwOutDataSize,
 /*OUT*/
BYTE **ppOutData);

Parameters

PPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

SzTargetName
The name of the target object used for the connection.

DwInDataSize
The number of bytes of encoded data.

PInData
A pointer to the encoded data. The memory is maintained by the product.

PdwOutDataSize
The memory location where the size of the clear text data has to be placed on output.

PpOutData
The memory location where the pointer to the clear text data has to be placed on output. The memory of the clear text data is maintained by the crypt provider

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to decode data using the own private RSA key. The DName of this key has been specified by the crypt provider in AVMNW_CryptProvider_Register(), so its not included here.

This function is used by the product to securely exchange session keys for a symmetric crypt algorithm (e.g. Twofish) within ECP.

Step 1

Since no DName is given in AVMNW_CryptProvider_Register() for Step 1 mode, the crypt provider may use the parameter szTargetName to select the key to be used for decryption.

Return Value

AVMNW_OK
The function succeeded.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server - supported

See Also

typedef DWORD (PASCAL *CryptProvider_RSAEncodeData) (
 /*IN*/
void *pPrivate,
 /*IN*/
char *szTargetName,
 /*IN*/
char *szDName_Subject,
 /*IN*/
DWORD dwInDataSize,
 /*IN*/
BYTE *pInData,
 /*OUT*/
DWORD *pdwOutDataSize,
 /*OUT*/
BYTE **ppOutData);

Parameters

pPrivate
Parameter transparently transferred from AVMNW_CryptProvider_Callback().

szTargetName
The name of the target object used for the connection.

szDName_Subject
The DName of the (public) RSA key to be used.

dwInDataSize
The number of bytes of clear text data.

pInData
A pointer to the clear text data. The memory is maintained by the product.

pdwOutDataSize
The memory location where the size of the encoded data has to be placed on output.

ppOutData
The memory location where the pointer to the encoded data has to be placed on output. The memory of the encoded data is maintained by the crypt provider

Remarks

This function is implemented by the crypt provider and called from within AVMNW_CryptProvider_Callback().

The product calls this function to encode data using a public RSA key referenced by szDName_Subject. The function CryptProvider_ReceiveCertificate() has been called before, so that the crypt provider knows this public RSA key (stored in the certificate).

This function is used by the product to securely exchange session keys for a symmetric crypt algorithm (e.g. Twofish) within ECP.

Step 1

The value of the parameter szDName_Subject is not defined in Step 1 mode. The crypt provider may use the parameter szTargetName to select the key to be used for encryption.

Return Value

AVMNW_OK
The function succeeded.

AVMNW_ERROR
General error.

Product Specifics

NetWAYS for Windows 95 - supported

NetWAYS for Windows NT - supported

NT/MPRI - supported

ISDN Access Server - supported

See Also

Example of Order of Function Calls.

In this example site A authenticates site B and transports a session key to site B. The calls for authentication of A and key generation by B are just the opposite. All data provided by the crypt provider are underlined.

Site A
Site B

Register(DName-TC, DName-CertA)
Register(DName-TC, DName-CertB)

CEP
CEP

GetOwnCertificate(DName-CertB, RSA-Algo, RSACertB)

ReceiveCertificate(RSACertB, DName-CertB, RSA-Algo) ok

GetOwnCertificate(DName-CertB, DSA-Algo, DSACertB)

ReceiveCertificate(DSACertB, DName-CertB, DSA-Algo) ok

EAP
EAP

MakeSignature(DName-CertB, DSA-Algo, challenge, sign)

VerifySignature(DName-CertB, DSA-Algo, challenge, sign) ok

ECP
ECP

RSAEncodeData(TargetName-SiteB, DName-CertB, sessionkey, data)

RSADecodeData(TargetName-SiteA, data, sessionkey)

ForgetCertificate(DName-CertB, RSA-Type)

ForgetCertificate(DName-CertB, DSA-Type)

Additional Attributes / Values for ‘Secure PPP’

Target

Attribute
Type
Valid values
Note

NInboundAuthentication
Number

AVMNW_Auth_Disabled

The remote site will not be authenticated.

AVMNW_Auth_PAP

The remote site will be authenticated using PAP (clear text passwords on the line).

AVMNW_Auth_CHAP

The remote site will be authenticated using CHAP (crypted passwords on the line).
AVMNW_Auth_EAP

The remote site will be authenticated using EAP (using DSA public/private key).

nDataEncryption
Number

AVMNW_Encryption_Disabled

Data encryption will be disabled.

AVMNW_Encryption_Twofish

The data will be encrypted using the Twofish algorithm using key size 128 bit in ECP.

AVMNW_Encryption_Twofish_192

The data will be encrypted using the Twofish algorithm using key size 192 in ECP.

AVMNW_Encryption_Twofish_256

The data will be encrypted using the Twofish algorithm using key size 256 in ECP.

- 1 -

